chat1
import polars as pl
from datetime import timedelta
def flag_offline_periods(propagate_indicator(df):
# CountEnsure entriesthe perdataframe bucketis sorted by timestamp
countsdf = df.groupby(sort('timestamp_bucket'timestamp').agg(pl.count('*').alias('count'))
# Create a functionhelper column to generatetrack offlinewhere periodsindicator is 1
defdf generate_offline_periods(high_count_buckets):= df.with_column(
offline_periods(pl.col('indicator') = [] for bucket in high_count_buckets: offline_end = bucket + pl.duration(seconds=30) offline_periods.append((bucket, offline_end)1).alias('start_indicator')
return offline_periods)
# GenerateCalculate offlinethe periodstimestamp up to which the value 1 should be propagated
offline_periodsdf = generate_offline_periods(high_count_buckets)df.with_column(
pl.when(pl.col('start_indicator'))
.then(pl.col('timestamp') + timedelta(seconds=30))
.otherwise(None)
.alias('propagate_until')
)
# MergeForward overlappingfill periodsthe 'propagate_until' to get the maximum propagate time
merged_periodsdf = []df.with_column(
for start, end in sorted(offline_periods): if merged_periods and start <= merged_periods[-1][1]: merged_periods[-1] = (merged_periods[-1][0], max(merged_periods[-1][1], end)pl.col('propagate_until').fill_null('forward').alias('propagation_time')
else:
)
# CreateUse a window function to check if a timestamp is within offline periods def is_offline(timestamp): return any(start <= timestamp < end for start, end in merged_periods) # Applypropagate the offline check to each rowindicator
df = df.with_columns(
pl.when(pl.col('timestamp_bucket'timestamp').apply(is_offline) <= pl.col('propagation_time'))
.then(pl.lit('OFFLINE'))1)
.otherwise(pl.lit(col('ONLINE'indicator'))
.alias('status'indicator_propagated')
)
# Drop helper columns
df = df.drop(['start_indicator', 'propagate_until', 'propagation_time'])
return df
# Assuming yourExample DataFrame
data is= called{
'df'timestamp': [pl.datetime("2023-01-01 00:00:00") + timedelta(seconds=i) for i in range(120)],
'indicator': [1 if i in [0, 50, 70, 100] else None for i in range(120)]
}
df = flag_offline_periods(pl.DataFrame(data)
# Apply the function
result_df = propagate_indicator(df)
print(result_df)